Longitudinal Data Analysis with Composite Likelihood Methods

Haocheng Li and Grace Y. Yi

Department of Statistics and Actuarial Science, University of Waterloo

(4回) (4回) (4回)

The National Population Health Survey Data (NPHS)

イロン イヨン イヨン イヨン

æ

Data Description

- The National Population Health Survey (NPHS) is a longitudinal study which collects information on health and related socio-demographic characteristics
- The study is designed to follow a group of Canadian household residents for 10 cycles
- The survey is conducted every second year from 1994/1995 and has completed nine cycles: Cycle 1 (1994/1995), Cycle 2 (1996/1997), ··· , Cycle 9 (2010/2011)
- One person in each household was randomly selected as the longitudinal respondent to answer an in-depth questionnaire

(ロ) (同) (E) (E) (E)

Data Description

The questions for the NPHS include

- Health information
 - Health status
 - The use of health services
 - Chronic conditions
 - Activity restrictions

• • • •

- Social background information
 - Age, Gender, Education, Income level, Marital status

• • • •

 One objective: understanding how health status may be associated with variables of social background information

・ 同 ト ・ ヨ ト ・ ヨ ト …

Health-Related Quality of Life

・ロト ・回ト ・ヨト ・ヨト

Э

- Health-Related Quality of Life is measured by the Health Utilities Index Mark 3 (HUI)
- The HUI describes health status using eight factors
 - Vision, Hearing, Speech, Ambulation
 - Dexterity, Emotion, Cognition, Pain and Discomfort
- Each factor has 5 or 6 levels that range from severely impaired to no impairment
- HUI is obtained based on the combination of all factor levels

・ 同 ト ・ ヨ ト ・ ヨ ト

Health-Related Quality of Life

HUI scores can range from -0.36 to 1.00

- A score of 1.00 represents perfect health
- A score of 0 represents the state of being dead
- A score less than 0 is a state "worse than dead"
- Scores less than 0 are possible because a health status can be considered as less preferable than being dead

向下 イヨト イヨト

The average HUI for respondents after age 40

Household Income

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ @ >

The NPHS employs various of indexes to evaluate the income level of respondents

- Total household income
- Total personal income
- Food insecurity
- Distribution of household income national level
- Distribution of household income provincial level

• • • •

向下 イヨト イヨト

For the variable "Distribution of household income - provincial level",

- it represents the ranking of household income
- it ranges from 1 to 10
- 10 represents the highest income decile in the entire sample
- 1 represents the lowest income decile in the entire sample

・ 同 ト ・ ヨ ト ・ ヨ ト

The average household income for respondents after age 40

Marital Status

6 categories

- married, living common-law, living with a partner
- widowed, separated, divorced, single (never married)

Variable Transformation

- Marriage=1 if married, living common-law, or living with a partner
- Marriage=0 if widowed, separated, divorced, or single (never married)

イロト イポト イヨト イヨト

Education

14 categories

- no schooling, elementary school, secondary school graduation
- bachelor degree, master degree, degree in medicine, doctorate degree

• • • •

Variable Transformation

- Two dummy variables: Education 1 (secondary school level) Education 2 (college level)
 - Education1=0 and Education2=0, if no schooling or elementary school
 - Education1=0 and Education2=1, if bachelor or higher degree
 - Education1=1 and Education2=0, otherwise

イロト イポト イヨト イヨト

Missing Data in the NPHS

・ロト ・日本 ・モト ・モト

Э

- The NPHS started with a sample of 17276 individuals
- The NPHS data are subject to information incompletion
- Three main possible reasons of incompleteness
 - non-tracing
 - refusal or unknown to question items
 - death

(4月) イヨト イヨト

Missing Data: Non-tracing

- "Non-tracing" denotes the situation that interviewers failed to reach the respondents
- To deal with non-tracing issue, many approaches were introduced into the survey
 - workload restriction
 - interviewers training
 - tracking individuals who moved within Canada or to United States
- Despite those efforts, the non-tracing rate in all 17276 members increased over time

$$\begin{array}{cccc} \text{Cycle 2} & \longrightarrow & \text{Cycle 7} \\ 1.7\% & \longrightarrow & 5.4\% \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Missing Data: Refusal or Unknown to Question

- Respondents may refuse to participate in the survey because of personal privacy, time schedule arrangement or other concerns
- The NPHS made efforts to persuade all members to continue the study
 - persuasive letter
 - senior interviewers
- Though many strategies were applied, refusal rate in survey sample increased from 3.1% in cycle 1 to 13.2% in cycle 7
- Respondents might attend the survey but refuse to answer some questions
 - A typical example: respondents may finish other questions but refuse to report their income status
- For some questions, respondents may not be sure about the answers and just report "unknown"

- Until cycle 7, there are 2032 (11.76%) members died before the end of the NPHS
- Death leads to another source of information loss that may not be well handled by general approaches

回 と く ヨ と く ヨ と

Ad Hoc Approach of Handling Missing Data:

イロト イポト イヨト イヨト

A Subset of the NPHS Data

▲□→ ▲圖→ ▲厘→ ▲厘→

э.

A Subset of the NPHS Data

- Longitudinal Data: 6 Cycles; 1349 subjects
- Age 50-70 at cycle 1; Still alive at cycle 6; Male
- Response: Health Utility Index
- Incomplete Covariate: Household Income
- Complete Covariates: Age, Education, Marital Status

Pata		Health Utility Index						Household Income					
Nate	1	2	3	4	5	6		1	2	3	4	5	6
43.2%	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
4.2%	\checkmark	×	×	×	×	×		\checkmark	×	×	×	×	×
•••													
2%	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
1%	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark
1%	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
√ Observ	ved; 🗙	Miss	sing										
										• 🗗 🕨	<.≣>	<≡>	æ
	Haocheng Li and Grace Y. Yi				Longit	udi	dinal Data Analysis with Composite Likeliho					elihood	

Notation (For Individual *i*)

Response & Covariates

Incomplete response: Y_{ij} - scalar, $\mathbf{Y}_i = (\mathbf{Y}_i^o, \mathbf{Y}_i^m)$

- Incomplete covariate: X_{ij} scalar, X_i = (X_i^o, X_i^m)
- Complete covariates: **Z**_{ij} scalar/vector (including intercept)

Missing Data Indicator

Inference Strategy - Observed Likelihood

Inference framework: $f(R_i^y, R_i^x, \mathbf{y}_i, \mathbf{x}_i | \mathbf{z}_i) = f(R_i^y, R_i^x | \mathbf{y}_i, \mathbf{x}_i, \mathbf{z}_i) f(\mathbf{y}_i | \mathbf{x}_i, \mathbf{z}_i) f(\mathbf{x}_i | \mathbf{z}_i)$

Strategy: observed likelihood

$$L_{i} = \int \int f(\boldsymbol{R}_{i}^{\boldsymbol{y}}, \boldsymbol{R}_{i}^{\boldsymbol{x}} | \boldsymbol{y}_{i}, \boldsymbol{x}_{i}, \boldsymbol{z}_{i}) f(\boldsymbol{y}_{i} | \boldsymbol{x}_{i}, \boldsymbol{z}_{i}) f(\boldsymbol{x}_{i} | \boldsymbol{z}_{i}) \mathrm{d} \boldsymbol{y}_{i}^{m} \mathrm{d} \boldsymbol{x}_{i}^{m} \quad (1)$$

Missing Data Mechanism

- $\blacksquare MCAR: f(R_i^y, R_i^x | \mathbf{y}_i, \mathbf{x}_i, \mathbf{z}_i) = f(R_i^y, R_i^x | \mathbf{z}_i)$
- MAR: $f(R_i^y, R_i^x | \mathbf{y}_i, \mathbf{x}_i, \mathbf{z}_i) = f(R_i^y, R_i^x | \mathbf{y}_i^o, \mathbf{x}_i^o, \mathbf{z}_i)$
- MNAR: f(R^y_i, R^x_i|y_i, x_i, z_i) = f(R^y_i, R^x_i|y^o_i, y^m_i, x^o_o, x^m_i, z_i) typically depends on unobserved y^m_i, x^m_i

向下 イヨト イヨ

- Modeling missing data process is generally required if MNAR holds when using likelihood-based methods
- High dimensional integrals would be involved in the observed likelihood (1)
- Other Possible Options:
 EM algorithm (e.g. Roy & Lin 2002)
 MCEM algorithm (e.g. Stubbendick & Ibrahim 2003)
- Challenges: difficult in modeling computationally expensive not robust

(日本) (日本) (日本)

Proposed Methods to Address the Challenges: Composite Likelihood Method

・ロト ・回ト ・ヨト ・ヨト

æ

Proposal: Composite Likelihood Method

- Composite likelihood consists of a combination of valid likelihood objects corresponding to a marginal or conditional event in small subsets of data
- Suppose correlated random variables $\mathbf{Y}_i = (Y_{i1}, Y_{i2}, \dots, Y_{in})$: Marginal uni-wise likelihood $L_{C1}(\mathbf{Y}_i) = \prod_{j=1}^m f(Y_{ij})$ Marginal pairwise likelihood $L_{C2}(\mathbf{Y}_i) = \prod_{i \le k} f(Y_{ij}, Y_{ik})$
- Unbiasedness: $E[S(\beta)] = E\left\{\frac{\partial logL_c}{\partial \beta}\right\} = 0$ Remark: This ensures the resulting estimator $\hat{\beta}$ is consistent
- Asymptotic Distribution:

$$\sqrt{n}(\hat{\beta}-\beta) \rightarrow_D \mathsf{N}(0,J(\beta)^{-1}\{\mathsf{K}(\beta)\}[J(\beta)^{-1}]^{\mathsf{T}})$$

where
$$\hat{J}(\beta) = \frac{1}{n} \sum_{i} - \left\{ \frac{\partial S_{i}(\beta)}{\partial \beta} \right\}_{\beta = \hat{\beta}}$$
, $\hat{K}(\beta) = \frac{1}{n} \sum_{i} S_{i}(\hat{\beta}) \{S_{i}(\hat{\beta})\}^{T}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Analysis of NPHS Data by Pairwise Model

Response Process $(HUI_{ii}, HUI_{ik}) \sim N_2(\mu_{ii}^{HUI}, \mu_{ik}^{HUI}; \Sigma_{HUI}(\sigma_v^2, \sigma_{ik}^{HUI})),$ $\mu_{ii}^{HUI} = \beta_0 + \beta_1 INC_{ij} + \beta_2 (AGE_{ij} - 50) + \beta_3 EDU1_i + \beta_4 EDU2_i + \beta_5 MARR_{ij}$ Covariate Process $(INC_{ii}, INC_{ik}) \sim N_2(\mu_{ii}^{INC}, \mu_{ik}^{INC}; \Sigma_{INC}(\sigma_x^2, \sigma_{ik}^{INC}))$ $\mu_{ii}^{INC} = \alpha_0 + \alpha_1 (AGE_{ii} - 50) + \alpha_2 EDU1_i + \alpha_3 EDU2_i + \alpha_4 MARR_{ii}$ Missing Process $f(r_{ii}^{y} = 1, r_{ik}^{y} = 1) = \Phi_{2}(\mu_{ii}^{y}, \mu_{ik}^{y}; \rho^{y}),$ $\mu_{ii}^{y} = \Phi(\eta_{0}^{y} + \eta_{1}^{y} H U I_{ii} + \eta_{2}^{y} I N C_{ii} + \eta_{2}^{y} A g e_{ii})$ $f(r_{ii}^{x} = 1, r_{ik}^{x} = 1) = \Phi_{2}(\mu_{ii}^{x}, \mu_{ik}^{x}; \rho^{x}),$ $\mu_{ii}^{x} = \Phi(\eta_{0}^{x} + \eta_{1}^{x}HUI_{ii} + \eta_{2}^{x}INC_{ii} + \eta_{3}^{x}r_{ii}^{y} + \eta_{4}^{x}Age_{ii})$

where

 $\Phi(\cdot)$ is standard normal distribution function $\Phi_2(\mu_1, \mu_2; \rho)$ is standard bivariate normal distribution function

		Composite Likelihood				Available Data			
		Est.	S.E	P-value		Est.	S.E	P-value	
Intercept	β_0	0.754	0.021	< 0.001		0.795	0.016	< 0.001	
INC	β_1	0.012	0.001	< 0.001		0.006	0.001	< 0.001	
AGE	β_2	-0.001	0.001	0.253		-0.002	< 0.001	< 0.001	
EDU1	β_3	0.026	0.015	0.085		0.030	0.013	0.021	
EDU2	β_4	0.050	0.017	0.003		0.063	0.017	< 0.001	
MARR	β_5	0.030	0.011	0.007		0.021	0.008	0.010	

((日)) (日) (日)

æ

Composite Likelihood in Handling Variable Selection

・ロン ・回 と ・ヨン ・ヨン

æ

- Response: Health Utility Index (HUI)
- Candidate Variables
 - alcohol dependence, chronic conditions, drugs
 - health care, injuries, mental health
 - nutrition, physical activities, self care
 - smoking, social support, stress
 - ••• many more
- Question: how do we know what variables should be included when building a model to explain response variable HUI ?

・ 同 ト ・ ヨ ト ・ ヨ ト

Our methods: penalized composite likelihood

$$logL_{pen}(Y) = logL_C(Y) - n \sum_{s=1}^{p} p_{\lambda}(|\beta_s|)$$

- p_λ(|β_s|) is the penalty function for the s-th element in β
- Choice of penalty functions is not unique. Fan and Li (2001) suggest the SCAD penalty

$$p_{\lambda}'(\beta_s) = \lambda \left\{ I(\beta_s \leq \lambda) + \frac{(a\lambda - \beta_s)_+}{(a-1)\lambda} I(\beta_s > \lambda) \right\}$$

(4月) イヨト イヨト

Model parameter: $\boldsymbol{\beta} = (\boldsymbol{\beta}_{I}^{\mathsf{T}}, \boldsymbol{\beta}_{II}^{\mathsf{T}})^{\mathsf{T}}$

- $\beta_I \neq \mathbf{0}$: corresponding to "important" variables
- $\beta_{II} = 0$: corresponding to "unimportant" variables
- Theorem 1:

There exists a local maximizer of $logL_{pen}(Y)$ such that

$$\|\hat{\boldsymbol{\beta}}_I - \boldsymbol{\beta}_I\| = O_p(n^{-1/2})$$

Theorem 2:

With probability tending to 1, the root-n consistent local maximizers $\hat{\beta}$ satisfies:

(a) Sparsity:
$$\hat{oldsymbol{eta}}_{I\!I} = oldsymbol{0}$$

(b) Asymptotic normality for $\hat{oldsymbol{eta}}_{I}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

- Response: Health Utility Index (HUI)
- Candidate Variables
 - Household Income (INC), Age (Age)
 INC², INC³, Age², Age³

 - Interaction terms (e.g. $INC \times Age$, $INC^2 \times Age$, etc)

向下 イヨト イヨト

Variable	Maximur	n Likelihood	Composite Likelihood			
Variable	Full Model	Selected Model	Full Model	Selected Model		
Intercept	-0.02(0.04)	0.00(0.03)	-0.02(0.04)	0.01(0.03)		
INC	0.11(0.06)	0.09(0.01)	0.16(0.07)	0.10(0.02)		
INC^2	-0.01(0.03)		-0.02(0.03)	-0.01(0.01)		
INC ³	-0.00(0.03)		0.01(0.04)	0.04(0.01)		
Age	0.35(0.22)	0.07(0.02)	0.23(0.20)	0.08(0.02)		
Age^2	-0.28(0.32)		-0.08(0.30)			
Age^3	0.03(0.12)	-0.04(0.01)	-0.03(0.11)	-0.03(0.01)		
$INC \times Age$	-0.25(0.38)		-0.35(0.39)			
$INC^2 \times Age$	-0.13(0.17)		-0.04(0.16)			
$INC^3 \times Age$	0.24(0.20)		0.27(0.22)			
$INC \times Age^2$	0.29(0.55)		0.44(0.57)			
$INC^2 \times Age^2$	0.16(0.24)		0.04(0.24)			
$\mathrm{INC}^3 \times \mathrm{Age}^2$	-0.35(0.30)		-0.40(0.32)			
$INC \times Age^3$	-0.09(0.20)		-0.15(0.21)			
$\mathrm{INC}^2 \times \mathrm{Age}^3$	-0.05(0.09)		-0.01(0.09)			
$\mathrm{INC}^3 \times \mathrm{Age}^3$	0.13(0.11)		0.15(0.12)			

・ロト ・日本 ・モート ・モート

æ

Concluding Remarks

< □ > < □ > < □ > < □ > < □ > .

æ

Summary & Comments

- When data have complex features, such as missing values and a large number of covariates, standard likelihood-based methods may become infeasible in
 - Model building
 - Computation implementation
 - Robustness
- Composite likelihood serves as an attractive alternative
- We particularly discuss a composite likelihood that handles incomplete data and model selection
- Computational gain: reduction in the dimensions of integrals
- Statistical gain: ease of modeling robustness

(日本) (日本) (日本)